You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

81 lines
2.5 KiB
Python

# -*- coding: iso-8859-1 -*-
import random
import json
import pickle
import numpy as np
import nltk
from nltk.stem import WordNetLemmatizer
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Activation, Dropout
from tensorflow.keras.optimizers import SGD
# Vorlage Code von NeuralNines YT Channel (https://www.youtube.com/watch?v=1lwddP0KUEg&t=1022s)
def train_osiris():
lemmatizer = WordNetLemmatizer()
intents = json.loads(open('intents.json').read())
words = []
classes = []
documents = []
ignore_letters = ['?', '!', ',', '.']
for intent in intents['intents']:
for pattern in intent['pattern']:
word_list = nltk.word_tokenize(pattern)
words.extend(word_list)
documents.append((word_list, intent["tag"]))
if intent['tag'] not in classes:
classes.append(intent['tag'])
words = [lemmatizer.lemmatize(word)
for word in words if word not in ignore_letters]
words = sorted(set(words))
classes = sorted(set(classes))
pickle.dump(words, open('words.pkl', 'wb'))
pickle.dump(classes, open('classes.pkl', 'wb'))
training = []
output_empty = [0] * len(classes)
for document in documents:
bag = []
word_patterns = document[0]
word_patterns = [lemmatizer.lemmatize(
word.lower()) for word in word_patterns]
for word in words:
bag.append(1) if word in word_patterns else bag.append(0)
output_row = list(output_empty)
output_row[classes.index(document[1])] = 1
training.append([bag, output_row])
random.shuffle(training)
training = np.array(training)
train_x = list(training[:, 0])
train_y = list(training[:, 1])
model = Sequential()
model.add(Dense(128, input_shape=(len(train_x[0]),), activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(len(train_y[0]), activation='softmax'))
sgd = SGD(learning_rate=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy',
optimizer=sgd, metrics=['accuracy'])
hist = model.fit(np.array(train_x), np.array(train_y),
epochs=200, batch_size=5, verbose=1)
model.save('osiris_sprachmodel.h5', hist)
print('Sprachmodel f<>r Osiris erstellt!')