Add Tables

main
dev_alex 1 year ago
parent 3e38c97f03
commit c84bb332df

4
.gitignore vendored

@ -5,8 +5,8 @@ __pycache__/
*$py.class
# Custom Ignore
.aax
.m4b
*.aax
*.m4b
# C extensions
*.so

@ -0,0 +1,11 @@
alglib1.so:
g++ -Wall -O3 -shared -fPIC alglib1.cpp sha1.c -o alglib1.so
windows:
# yum install mingw32-openssl mingw32-openssl-static mingw32-gcc mingw32-gcc-c++ mingw32-winpthreads-static -y
i686-w64-mingw32-g++ -c alglib1.cpp
i686-w64-mingw32-g++ -static -shared -o alglib1.dll alglib1.o -lcrypto -lpthread
# yum install mingw64-openssl mingw64-openssl-static mingw64-gcc mingw64-gcc-c++ mingw64-winpthreads-static mingw64-zlib-static mingw64-libgomp -y
x86_64-w64-mingw32-g++ -c alglib1.cpp -lcrypto
x86_64-w64-mingw32-g++ -static -shared -o alglib1.dll alglib1.o -lcrypto -lpthread

@ -0,0 +1,84 @@
## NOTE (Licensing)
Commercial usage of this project requires a license from the author(s) of
this project. Contact us for details.
Note: The licensing terms of this project were changed due to commercial abuse
from OpenAudible (http://openaudible.org/) and other projects.
## About
Plugin for [RainbowCrack](http://project-rainbowcrack.com/) to recover your own
Audible activation data (activation_bytes) in an offline manner.
You need to recover or retrieve your "activation_bytes" only once. This single
"activation_bytes" value will work for all your .aax files.
## Donations
Donations are gladly accepted. Please send BTC to `1FDFp8kWjnUCGTLw1SVkim6kRnYDge2vYh`
to support the development, and maintenance of this project. Thank you!
## Note
Git clone this repository on your machine. This repository has the required
rainbow tables `(*.rtc files)` and RainbowCrack binaries.
```
git clone https://github.com/inAudible-NG/tables.git
```
## Usage on Linux
FFmpeg 2.8.1+ is required. Use Wine with the included (in `run` folder) Windows
binaries in case these Linux executables do not run on your distribution.
##### Extract SHA1 checksum from the .aax file
```
$ ffprobe test.aax # extract SHA1 checksum
...
[mov,mp4,m4a,3gp,3g2,mj2 @ 0x1dde580] [aax] file checksum == 999a6ab8...
[mov,mp4,m4a,3gp,3g2,mj2 @ 0x1dde580] [aax] activation_bytes option is missing!
```
##### Recover "activation_bytes"
```
$ ./rcrack . -h 999a6ab8...
```
## Usage on Windows
Download FFmpeg from https://ffmpeg.zeranoe.com/builds/.
##### Extract SHA1 checksum from .aax file
```
C:\>ffprobe.exe sample.aax
ffprobe version N-79460-g21acc4d Copyright (c) 2007-2016 the FFmpeg developers
built with gcc 5.3.0 (GCC)
...
[mov,mp4,m4a,3gp,3g2,mj2 @ 039aae60] [aax] file checksum == 999a6ab8...
[mov,mp4,m4a,3gp,3g2,mj2 @ 039aae60] [aax] activation_bytes option is missing!
```
##### Recover "activation_bytes"
```
C:\tables>run\rcrack.exe . -h 999a6ab8...
statistics
-------------------------------------------------------
plaintext found: 1 of 1
total time: 13.98 s
...
result
-------------------------------------------------------
999a6ab8... xyz hex:CAFED00D
```
"activation_bytes" is CAFED00D here.
## References
See http://project-rainbowcrack.com/alglib.htm for details.

@ -0,0 +1,80 @@
/*
* http://www.tobtu.com/rtcalc.php#params
*
* keyspace is 256^4 (length is always 4)
* 99.999999% (Total success rate)
*
* ./rtgen audible byte 4 4 0 10000 10008356 0
* ./rtgen audible byte 4 4 1 10000 10008356 0
* ./rtgen audible byte 4 4 2 10000 10008356 0
* ./rtgen audible byte 4 4 3 10000 10008356 0
* ./rtgen audible byte 4 4 4 10000 10008356 0
* ./rtgen audible byte 4 4 5 10000 10008356 0
* ./rtgen audible byte 4 4 6 10000 10008356 0
* ./rtgen audible byte 4 4 7 10000 10008356 0
* ./rtgen audible byte 4 4 8 10000 10008356 0
* ./rtgen audible byte 4 4 9 10000 10008356 0
*
* ./rtsort *.rt
* ./rt2rtc *.rt 21 24 -m 18 -p
* ./rt2rtc *.rt 25 25 -m 512 -p
*/
// #include <openssl/sha.h>
#include <stdio.h>
#include "sha1.h"
#ifdef _WIN32
#pragma comment(lib, "libeay32.lib")
#endif
#define MIN_HASH_LEN 8
#define MAX_HASH_LEN 32
void
#ifdef _WIN32
__stdcall
#endif
Audible(
unsigned char *pData, // [in] plaintext to be hashed
unsigned int uLen, // [in] length of the plaintext
unsigned char Hash[MAX_HASH_LEN]) // [out] the result hash, size of the buffer is MAX_HASH_LEN bytes
{
unsigned char fixed_key[] = { 0x77, 0x21, 0x4d, 0x4b, 0x19, 0x6a, 0x87,
0xcd, 0x52, 0x00, 0x45, 0xfd, 0x20, 0xa5, 0x1d, 0x67 };
unsigned char intermediate_key[20] = {0};
unsigned char intermediate_iv[20] = {0};
SHA_CTX ctx;
SHA1_Init(&ctx);
SHA1_Update(&ctx, fixed_key, 16);
SHA1_Update(&ctx, pData, uLen);
SHA1_Final(intermediate_key, &ctx);
SHA1_Init(&ctx);
SHA1_Update(&ctx, fixed_key, 16);
SHA1_Update(&ctx, intermediate_key, 20);
SHA1_Update(&ctx, pData, uLen);
SHA1_Final(intermediate_iv, &ctx);
SHA1_Init(&ctx);
SHA1_Update(&ctx, intermediate_key, 16);
SHA1_Update(&ctx, intermediate_iv, 16);
SHA1_Final(Hash, &ctx);
}
struct HashAlgorithmEntry
{
const char *szName; // name of the hash algorithm
void *pHashAlgorithm; // function pointer to the hash algorithm's implementation
unsigned int uHashLen; // output length of the hash algorithm, MIN_HASH_LEN <= uHashLen <= MAX_HASH_LEN
// input plaintext length range supported by the hash algorithm's implementation
unsigned int uPlaintextLenMin;
unsigned int uPlaintextLenMax;
};
struct HashAlgorithmEntry HashAlgorithms[] = { // this symbol will be exported
{"audible", (void *)Audible, 20, 4, 4}, // always 4 bytes
{0, 0, 0, 0, 0}, // terminated by an entry of all zeroes
};

@ -0,0 +1,180 @@
/*
* Let's make sure we always have a sane definition for ntohl()/htonl().
* Some libraries define those as a function call, just to perform byte
* shifting, bringing significant overhead to what should be a simple
* operation.
*/
/*
* Default version that the compiler ought to optimize properly with
* constant values.
*/
static inline uint32_t default_swab32(uint32_t val)
{
return (((val & 0xff000000) >> 24) |
((val & 0x00ff0000) >> 8) |
((val & 0x0000ff00) << 8) |
((val & 0x000000ff) << 24));
}
static inline uint64_t default_bswap64(uint64_t val)
{
return (((val & (uint64_t)0x00000000000000ffULL) << 56) |
((val & (uint64_t)0x000000000000ff00ULL) << 40) |
((val & (uint64_t)0x0000000000ff0000ULL) << 24) |
((val & (uint64_t)0x00000000ff000000ULL) << 8) |
((val & (uint64_t)0x000000ff00000000ULL) >> 8) |
((val & (uint64_t)0x0000ff0000000000ULL) >> 24) |
((val & (uint64_t)0x00ff000000000000ULL) >> 40) |
((val & (uint64_t)0xff00000000000000ULL) >> 56));
}
#undef bswap32
#undef bswap64
#if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))
#define bswap32 git_bswap32
static inline uint32_t git_bswap32(uint32_t x)
{
uint32_t result;
if (__builtin_constant_p(x))
result = default_swab32(x);
else
__asm__("bswap %0" : "=r" (result) : "0" (x));
return result;
}
#define bswap64 git_bswap64
#if defined(__x86_64__)
static inline uint64_t git_bswap64(uint64_t x)
{
uint64_t result;
if (__builtin_constant_p(x))
result = default_bswap64(x);
else
__asm__("bswap %q0" : "=r" (result) : "0" (x));
return result;
}
#else
static inline uint64_t git_bswap64(uint64_t x)
{
union { uint64_t i64; uint32_t i32[2]; } tmp, result;
if (__builtin_constant_p(x))
result.i64 = default_bswap64(x);
else {
tmp.i64 = x;
result.i32[0] = git_bswap32(tmp.i32[1]);
result.i32[1] = git_bswap32(tmp.i32[0]);
}
return result.i64;
}
#endif
#elif defined(_MSC_VER) && (defined(_M_IX86) || defined(_M_X64))
#include <stdlib.h>
#define bswap32(x) _byteswap_ulong(x)
#define bswap64(x) _byteswap_uint64(x)
#endif
#if defined(bswap32)
#undef ntohl
#undef htonl
#define ntohl(x) bswap32(x)
#define htonl(x) bswap32(x)
#endif
#if defined(bswap64)
#undef ntohll
#undef htonll
#define ntohll(x) bswap64(x)
#define htonll(x) bswap64(x)
#else
#undef ntohll
#undef htonll
#if defined(__BYTE_ORDER) && defined(__LITTLE_ENDIAN) && defined(__BIG_ENDIAN)
# define GIT_BYTE_ORDER __BYTE_ORDER
# define GIT_LITTLE_ENDIAN __LITTLE_ENDIAN
# define GIT_BIG_ENDIAN __BIG_ENDIAN
#elif defined(BYTE_ORDER) && defined(LITTLE_ENDIAN) && defined(BIG_ENDIAN)
# define GIT_BYTE_ORDER BYTE_ORDER
# define GIT_LITTLE_ENDIAN LITTLE_ENDIAN
# define GIT_BIG_ENDIAN BIG_ENDIAN
#else
# define GIT_BIG_ENDIAN 4321
# define GIT_LITTLE_ENDIAN 1234
# if defined(_BIG_ENDIAN) && !defined(_LITTLE_ENDIAN)
# define GIT_BYTE_ORDER GIT_BIG_ENDIAN
# elif defined(_LITTLE_ENDIAN) && !defined(_BIG_ENDIAN)
# define GIT_BYTE_ORDER GIT_LITTLE_ENDIAN
# elif defined(__THW_BIG_ENDIAN__) && !defined(__THW_LITTLE_ENDIAN__)
# define GIT_BYTE_ORDER GIT_BIG_ENDIAN
# elif defined(__THW_LITTLE_ENDIAN__) && !defined(__THW_BIG_ENDIAN__)
# define GIT_BYTE_ORDER GIT_LITTLE_ENDIAN
# else
# error "Cannot determine endianness"
# endif
#endif
#if GIT_BYTE_ORDER == GIT_BIG_ENDIAN
# define ntohll(n) (n)
# define htonll(n) (n)
#else
# define ntohll(n) default_bswap64(n)
# define htonll(n) default_bswap64(n)
#endif
#endif
/*
* Performance might be improved if the CPU architecture is OK with
* unaligned 32-bit loads and a fast ntohl() is available.
* Otherwise fall back to byte loads and shifts which is portable,
* and is faster on architectures with memory alignment issues.
*/
#if !defined(NO_UNALIGNED_LOADS) && ( \
defined(__i386__) || defined(__x86_64__) || \
defined(_M_IX86) || defined(_M_X64) || \
defined(__ppc__) || defined(__ppc64__) || \
defined(__powerpc__) || defined(__powerpc64__) || \
defined(__s390__) || defined(__s390x__))
#define get_be16(p) ntohs(*(unsigned short *)(p))
#define get_be32(p) ntohl(*(unsigned int *)(p))
#define put_be32(p, v) do { *(unsigned int *)(p) = htonl(v); } while (0)
#else
#define get_be16(p) ( \
(*((unsigned char *)(p) + 0) << 8) | \
(*((unsigned char *)(p) + 1) << 0) )
#define get_be32(p) ( \
(*((unsigned char *)(p) + 0) << 24) | \
(*((unsigned char *)(p) + 1) << 16) | \
(*((unsigned char *)(p) + 2) << 8) | \
(*((unsigned char *)(p) + 3) << 0) )
#define put_be32(p, v) do { \
unsigned int __v = (v); \
*((unsigned char *)(p) + 0) = __v >> 24; \
*((unsigned char *)(p) + 1) = __v >> 16; \
*((unsigned char *)(p) + 2) = __v >> 8; \
*((unsigned char *)(p) + 3) = __v >> 0; } while (0)
#endif

@ -0,0 +1,15 @@
numeric = [0123456789]
alpha = [ABCDEFGHIJKLMNOPQRSTUVWXYZ]
alpha-numeric = [ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789]
loweralpha = [abcdefghijklmnopqrstuvwxyz]
loweralpha-numeric = [abcdefghijklmnopqrstuvwxyz0123456789]
mixalpha = [abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ]
mixalpha-numeric = [abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789]
ascii-32-95 = [ !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~]
ascii-32-65-123-4 = [ !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`{|}~]
alpha-numeric-symbol32-space = [ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789!@#$%^&*()-_+=~`[]{}|\:;"'<>,.?/ ]

@ -0,0 +1,10 @@
#!/bin/bash
# ./demo.sh <sha1 checksum>
# 00112233
pattern='hex:'
cd `dirname $0`
./rcrack . -h $1 | grep $pattern | awk -F $pattern '{print $2}'

@ -0,0 +1,20 @@
#!/bin/bash
# http://www.tobtu.com/rtcalc.php#params
# keyspace is 256^4 (length is always 4)
# 99.999999% (Total success rate)
./rtgen audible byte 4 4 0 10000 10008356 0
./rtgen audible byte 4 4 1 10000 10008356 0
./rtgen audible byte 4 4 2 10000 10008356 0
./rtgen audible byte 4 4 3 10000 10008356 0
./rtgen audible byte 4 4 4 10000 10008356 0
./rtgen audible byte 4 4 5 10000 10008356 0
./rtgen audible byte 4 4 6 10000 10008356 0
./rtgen audible byte 4 4 7 10000 10008356 0
./rtgen audible byte 4 4 8 10000 10008356 0
./rtgen audible byte 4 4 9 10000 10008356 0
# ./rtsort *.rt
# ./rt2rtc *.rt 21 24 -m 18 -p
# ./rt2rtc *.rt 25 25 -m 512 -p

Binary file not shown.

Binary file not shown.

@ -0,0 +1 @@
f0bb92cc20224fa806cd68d1bbd4fca4 alglib1.dll

@ -0,0 +1,15 @@
numeric = [0123456789]
alpha = [ABCDEFGHIJKLMNOPQRSTUVWXYZ]
alpha-numeric = [ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789]
loweralpha = [abcdefghijklmnopqrstuvwxyz]
loweralpha-numeric = [abcdefghijklmnopqrstuvwxyz0123456789]
mixalpha = [abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ]
mixalpha-numeric = [abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789]
ascii-32-95 = [ !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~]
ascii-32-65-123-4 = [ !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`{|}~]
alpha-numeric-symbol32-space = [ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789!@#$%^&*()-_+=~`[]{}|\:;"'<>,.?/ ]

Binary file not shown.

@ -0,0 +1 @@
7a58ea0c818653a323345800d394dfc9 rcrack.exe

@ -0,0 +1,4 @@
This folder contains a stripped down version of rainbowcrack-1.7-win64.zip
file.
Tested on CentOS 7 (with Wine from EPEL).

@ -0,0 +1,249 @@
/*
* SHA1 routine optimized to do word accesses rather than byte accesses,
* and to avoid unnecessary copies into the context array.
*
* This was initially based on the Mozilla SHA1 implementation, although
* none of the original Mozilla code remains.
*/
/* this is only to get definitions for memcpy(), ntohl() and htonl() */
#include "sha1.h"
#if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))
/*
* Force usage of rol or ror by selecting the one with the smaller constant.
* It _can_ generate slightly smaller code (a constant of 1 is special), but
* perhaps more importantly it's possibly faster on any uarch that does a
* rotate with a loop.
*/
#define SHA_ASM(op, x, n) ({ unsigned int __res; __asm__(op " %1,%0":"=r" (__res):"i" (n), "0" (x)); __res; })
#define SHA_ROL(x,n) SHA_ASM("rol", x, n)
#define SHA_ROR(x,n) SHA_ASM("ror", x, n)
#else
#define SHA_ROT(X,l,r) (((X) << (l)) | ((X) >> (r)))
#define SHA_ROL(X,n) SHA_ROT(X,n,32-(n))
#define SHA_ROR(X,n) SHA_ROT(X,32-(n),n)
#endif
/*
* If you have 32 registers or more, the compiler can (and should)
* try to change the array[] accesses into registers. However, on
* machines with less than ~25 registers, that won't really work,
* and at least gcc will make an unholy mess of it.
*
* So to avoid that mess which just slows things down, we force
* the stores to memory to actually happen (we might be better off
* with a 'W(t)=(val);asm("":"+m" (W(t))' there instead, as
* suggested by Artur Skawina - that will also make gcc unable to
* try to do the silly "optimize away loads" part because it won't
* see what the value will be).
*
* Ben Herrenschmidt reports that on PPC, the C version comes close
* to the optimized asm with this (ie on PPC you don't want that
* 'volatile', since there are lots of registers).
*
* On ARM we get the best code generation by forcing a full memory barrier
* between each SHA_ROUND, otherwise gcc happily get wild with spilling and
* the stack frame size simply explode and performance goes down the drain.
*/
#if defined(__i386__) || defined(__x86_64__)
#define setW(x, val) (*(volatile unsigned int *)&W(x) = (val))
#elif defined(__GNUC__) && defined(__arm__)
#define setW(x, val) do { W(x) = (val); __asm__("":::"memory"); } while (0)
#else
#define setW(x, val) (W(x) = (val))
#endif
/* This "rolls" over the 512-bit array */
#define W(x) (array[(x)&15])
/*
* Where do we get the source from? The first 16 iterations get it from
* the input data, the next mix it from the 512-bit array.
*/
#define SHA_SRC(t) get_be32((unsigned char *) block + (t)*4)
#define SHA_MIX(t) SHA_ROL(W((t)+13) ^ W((t)+8) ^ W((t)+2) ^ W(t), 1);
#define SHA_ROUND(t, input, fn, constant, A, B, C, D, E) do { \
unsigned int TEMP = input(t); setW(t, TEMP); \
E += TEMP + SHA_ROL(A,5) + (fn) + (constant); \
B = SHA_ROR(B, 2); } while (0)
#define T_0_15(t, A, B, C, D, E) SHA_ROUND(t, SHA_SRC, (((C^D)&B)^D) , 0x5a827999, A, B, C, D, E )
#define T_16_19(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (((C^D)&B)^D) , 0x5a827999, A, B, C, D, E )
#define T_20_39(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (B^C^D) , 0x6ed9eba1, A, B, C, D, E )
#define T_40_59(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, ((B&C)+(D&(B^C))) , 0x8f1bbcdc, A, B, C, D, E )
#define T_60_79(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (B^C^D) , 0xca62c1d6, A, B, C, D, E )
static void blk_SHA1_Block(blk_SHA_CTX *ctx, const void *block)
{
unsigned int A,B,C,D,E;
unsigned int array[16];
A = ctx->H[0];
B = ctx->H[1];
C = ctx->H[2];
D = ctx->H[3];
E = ctx->H[4];
/* Round 1 - iterations 0-16 take their input from 'block' */
T_0_15( 0, A, B, C, D, E);
T_0_15( 1, E, A, B, C, D);
T_0_15( 2, D, E, A, B, C);
T_0_15( 3, C, D, E, A, B);
T_0_15( 4, B, C, D, E, A);
T_0_15( 5, A, B, C, D, E);
T_0_15( 6, E, A, B, C, D);
T_0_15( 7, D, E, A, B, C);
T_0_15( 8, C, D, E, A, B);
T_0_15( 9, B, C, D, E, A);
T_0_15(10, A, B, C, D, E);
T_0_15(11, E, A, B, C, D);
T_0_15(12, D, E, A, B, C);
T_0_15(13, C, D, E, A, B);
T_0_15(14, B, C, D, E, A);
T_0_15(15, A, B, C, D, E);
/* Round 1 - tail. Input from 512-bit mixing array */
T_16_19(16, E, A, B, C, D);
T_16_19(17, D, E, A, B, C);
T_16_19(18, C, D, E, A, B);
T_16_19(19, B, C, D, E, A);
/* Round 2 */
T_20_39(20, A, B, C, D, E);
T_20_39(21, E, A, B, C, D);
T_20_39(22, D, E, A, B, C);
T_20_39(23, C, D, E, A, B);
T_20_39(24, B, C, D, E, A);
T_20_39(25, A, B, C, D, E);
T_20_39(26, E, A, B, C, D);
T_20_39(27, D, E, A, B, C);
T_20_39(28, C, D, E, A, B);
T_20_39(29, B, C, D, E, A);
T_20_39(30, A, B, C, D, E);
T_20_39(31, E, A, B, C, D);
T_20_39(32, D, E, A, B, C);
T_20_39(33, C, D, E, A, B);
T_20_39(34, B, C, D, E, A);
T_20_39(35, A, B, C, D, E);
T_20_39(36, E, A, B, C, D);
T_20_39(37, D, E, A, B, C);
T_20_39(38, C, D, E, A, B);
T_20_39(39, B, C, D, E, A);
/* Round 3 */
T_40_59(40, A, B, C, D, E);
T_40_59(41, E, A, B, C, D);
T_40_59(42, D, E, A, B, C);
T_40_59(43, C, D, E, A, B);
T_40_59(44, B, C, D, E, A);
T_40_59(45, A, B, C, D, E);
T_40_59(46, E, A, B, C, D);
T_40_59(47, D, E, A, B, C);
T_40_59(48, C, D, E, A, B);
T_40_59(49, B, C, D, E, A);
T_40_59(50, A, B, C, D, E);
T_40_59(51, E, A, B, C, D);
T_40_59(52, D, E, A, B, C);
T_40_59(53, C, D, E, A, B);
T_40_59(54, B, C, D, E, A);
T_40_59(55, A, B, C, D, E);
T_40_59(56, E, A, B, C, D);
T_40_59(57, D, E, A, B, C);
T_40_59(58, C, D, E, A, B);
T_40_59(59, B, C, D, E, A);
/* Round 4 */
T_60_79(60, A, B, C, D, E);
T_60_79(61, E, A, B, C, D);
T_60_79(62, D, E, A, B, C);
T_60_79(63, C, D, E, A, B);
T_60_79(64, B, C, D, E, A);
T_60_79(65, A, B, C, D, E);
T_60_79(66, E, A, B, C, D);
T_60_79(67, D, E, A, B, C);
T_60_79(68, C, D, E, A, B);
T_60_79(69, B, C, D, E, A);
T_60_79(70, A, B, C, D, E);
T_60_79(71, E, A, B, C, D);
T_60_79(72, D, E, A, B, C);
T_60_79(73, C, D, E, A, B);
T_60_79(74, B, C, D, E, A);
T_60_79(75, A, B, C, D, E);
T_60_79(76, E, A, B, C, D);
T_60_79(77, D, E, A, B, C);
T_60_79(78, C, D, E, A, B);
T_60_79(79, B, C, D, E, A);
ctx->H[0] += A;
ctx->H[1] += B;
ctx->H[2] += C;
ctx->H[3] += D;
ctx->H[4] += E;
}
void blk_SHA1_Init(blk_SHA_CTX *ctx)
{
ctx->size = 0;
/* Initialize H with the magic constants (see FIPS180 for constants) */
ctx->H[0] = 0x67452301;
ctx->H[1] = 0xefcdab89;
ctx->H[2] = 0x98badcfe;
ctx->H[3] = 0x10325476;
ctx->H[4] = 0xc3d2e1f0;
}
void blk_SHA1_Update(blk_SHA_CTX *ctx, const void *data, unsigned long len)
{
unsigned int lenW = ctx->size & 63;
ctx->size += len;
/* Read the data into W and process blocks as they get full */
if (lenW) {
unsigned int left = 64 - lenW;
if (len < left)
left = len;
memcpy(lenW + (char *)ctx->W, data, left);
lenW = (lenW + left) & 63;
len -= left;
data = ((const char *)data + left);
if (lenW)
return;
blk_SHA1_Block(ctx, ctx->W);
}
while (len >= 64) {
blk_SHA1_Block(ctx, data);
data = ((const char *)data + 64);
len -= 64;
}
if (len)
memcpy(ctx->W, data, len);
}
void blk_SHA1_Final(unsigned char hashout[20], blk_SHA_CTX *ctx)
{
static const unsigned char pad[64] = { 0x80 };
unsigned int padlen[2];
int i;
/* Pad with a binary 1 (ie 0x80), then zeroes, then length */
padlen[0] = htonl((uint32_t)(ctx->size >> 29));
padlen[1] = htonl((uint32_t)(ctx->size << 3));
i = ctx->size & 63;
blk_SHA1_Update(ctx, pad, 1 + (63 & (55 - i)));
blk_SHA1_Update(ctx, padlen, 8);
/* Output hash */
for (i = 0; i < 5; i++)
put_be32(hashout + i * 4, ctx->H[i]);
}

@ -0,0 +1,32 @@
/*
* SHA1 routine optimized to do word accesses rather than byte accesses,
* and to avoid unnecessary copies into the context array.
*
* This was initially based on the Mozilla SHA1 implementation, although
* none of the original Mozilla code remains.
*/
#include <string.h>
#include <stdlib.h>
#include <stdint.h>
#include "bswap.h"
typedef struct {
unsigned long long size;
unsigned int H[5];
unsigned int W[16];
} blk_SHA_CTX;
void blk_SHA1_Init(blk_SHA_CTX *ctx);
void blk_SHA1_Update(blk_SHA_CTX *ctx, const void *dataIn, unsigned long len);
void blk_SHA1_Final(unsigned char hashout[20], blk_SHA_CTX *ctx);
#define platform_SHA_CTX blk_SHA_CTX
#define platform_SHA1_Init blk_SHA1_Init
#define platform_SHA1_Update blk_SHA1_Update
#define platform_SHA1_Final blk_SHA1_Final
#define SHA_CTX blk_SHA_CTX
#define SHA1_Init blk_SHA1_Init
#define SHA1_Update blk_SHA1_Update
#define SHA1_Final blk_SHA1_Final
Loading…
Cancel
Save