|
|
|
|
#region License
|
|
|
|
|
/*
|
|
|
|
|
MIT License
|
|
|
|
|
Copyright © 2006 The Mono.Xna Team
|
|
|
|
|
|
|
|
|
|
All rights reserved.
|
|
|
|
|
|
|
|
|
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
|
|
|
of this software and associated documentation files (the "Software"), to deal
|
|
|
|
|
in the Software without restriction, including without limitation the rights
|
|
|
|
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
|
|
|
copies of the Software, and to permit persons to whom the Software is
|
|
|
|
|
furnished to do so, subject to the following conditions:
|
|
|
|
|
|
|
|
|
|
The above copyright notice and this permission notice shall be included in all
|
|
|
|
|
copies or substantial portions of the Software.
|
|
|
|
|
|
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
|
|
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
|
|
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
|
|
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
|
|
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
|
|
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
|
|
|
SOFTWARE.
|
|
|
|
|
*/
|
|
|
|
|
#endregion License
|
|
|
|
|
|
|
|
|
|
using System;
|
|
|
|
|
|
|
|
|
|
namespace Otter {
|
|
|
|
|
/// <summary>
|
|
|
|
|
/// Struct for representing a Quaternion.
|
|
|
|
|
/// </summary>
|
|
|
|
|
public struct Quaternion : IEquatable<Quaternion> {
|
|
|
|
|
public float X;
|
|
|
|
|
|
|
|
|
|
public float Y;
|
|
|
|
|
|
|
|
|
|
public float Z;
|
|
|
|
|
|
|
|
|
|
public float W;
|
|
|
|
|
|
|
|
|
|
static Quaternion identity = new Quaternion(0, 0, 0, 1);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
public Quaternion(float x, float y, float z, float w) {
|
|
|
|
|
this.X = x;
|
|
|
|
|
this.Y = y;
|
|
|
|
|
this.Z = z;
|
|
|
|
|
this.W = w;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
public Quaternion(Vector3 vectorPart, float scalarPart) {
|
|
|
|
|
this.X = vectorPart.X;
|
|
|
|
|
this.Y = vectorPart.Y;
|
|
|
|
|
this.Z = vectorPart.Z;
|
|
|
|
|
this.W = scalarPart;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
public static Quaternion Identity {
|
|
|
|
|
get { return identity; }
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
public static Quaternion Add(Quaternion quaternion1, Quaternion quaternion2) {
|
|
|
|
|
//Syderis
|
|
|
|
|
Quaternion quaternion;
|
|
|
|
|
quaternion.X = quaternion1.X + quaternion2.X;
|
|
|
|
|
quaternion.Y = quaternion1.Y + quaternion2.Y;
|
|
|
|
|
quaternion.Z = quaternion1.Z + quaternion2.Z;
|
|
|
|
|
quaternion.W = quaternion1.W + quaternion2.W;
|
|
|
|
|
return quaternion;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
public static void Add(ref Quaternion quaternion1, ref Quaternion quaternion2, out Quaternion result) {
|
|
|
|
|
//Syderis
|
|
|
|
|
result.X = quaternion1.X + quaternion2.X;
|
|
|
|
|
result.Y = quaternion1.Y + quaternion2.Y;
|
|
|
|
|
result.Z = quaternion1.Z + quaternion2.Z;
|
|
|
|
|
result.W = quaternion1.W + quaternion2.W;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
//Funcion añadida Syderis
|
|
|
|
|
public static Quaternion Concatenate(Quaternion value1, Quaternion value2) {
|
|
|
|
|
Quaternion quaternion;
|
|
|
|
|
float x = value2.X;
|
|
|
|
|
float y = value2.Y;
|
|
|
|
|
float z = value2.Z;
|
|
|
|
|
float w = value2.W;
|
|
|
|
|
float num4 = value1.X;
|
|
|
|
|
float num3 = value1.Y;
|
|
|
|
|
float num2 = value1.Z;
|
|
|
|
|
float num = value1.W;
|
|
|
|
|
float num12 = (y * num2) - (z * num3);
|
|
|
|
|
float num11 = (z * num4) - (x * num2);
|
|
|
|
|
float num10 = (x * num3) - (y * num4);
|
|
|
|
|
float num9 = ((x * num4) + (y * num3)) + (z * num2);
|
|
|
|
|
quaternion.X = ((x * num) + (num4 * w)) + num12;
|
|
|
|
|
quaternion.Y = ((y * num) + (num3 * w)) + num11;
|
|
|
|
|
quaternion.Z = ((z * num) + (num2 * w)) + num10;
|
|
|
|
|
quaternion.W = (w * num) - num9;
|
|
|
|
|
return quaternion;
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
//Añadida por Syderis
|
|
|
|
|
public static void Concatenate(ref Quaternion value1, ref Quaternion value2, out Quaternion result) {
|
|
|
|
|
float x = value2.X;
|
|
|
|
|
float y = value2.Y;
|
|
|
|
|
float z = value2.Z;
|
|
|
|
|
float w = value2.W;
|
|
|
|
|
float num4 = value1.X;
|
|
|
|
|
float num3 = value1.Y;
|
|
|
|
|
float num2 = value1.Z;
|
|
|
|
|
float num = value1.W;
|
|
|
|
|
float num12 = (y * num2) - (z * num3);
|
|
|
|
|
float num11 = (z * num4) - (x * num2);
|
|
|
|
|
float num10 = (x * num3) - (y * num4);
|
|
|
|
|
float num9 = ((x * num4) + (y * num3)) + (z * num2);
|
|
|
|
|
result.X = ((x * num) + (num4 * w)) + num12;
|
|
|
|
|
result.Y = ((y * num) + (num3 * w)) + num11;
|
|
|
|
|
result.Z = ((z * num) + (num2 * w)) + num10;
|
|
|
|
|
result.W = (w * num) - num9;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
//Añadida por Syderis
|
|
|
|
|
public void Conjugate() {
|
|
|
|
|
this.X = -this.X;
|
|
|
|
|
this.Y = -this.Y;
|
|
|
|
|
this.Z = -this.Z;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
//Añadida por Syderis
|
|
|
|
|
public static Quaternion Conjugate(Quaternion value) {
|
|
|
|
|
Quaternion quaternion;
|
|
|
|
|
quaternion.X = -value.X;
|
|
|
|
|
quaternion.Y = -value.Y;
|
|
|
|
|
quaternion.Z = -value.Z;
|
|
|
|
|
quaternion.W = value.W;
|
|
|
|
|
return quaternion;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
//Añadida por Syderis
|
|
|
|
|
public static void Conjugate(ref Quaternion value, out Quaternion result) {
|
|
|
|
|
result.X = -value.X;
|
|
|
|
|
result.Y = -value.Y;
|
|
|
|
|
result.Z = -value.Z;
|
|
|
|
|
result.W = value.W;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
public static Quaternion CreateFromAxisAngle(Vector3 axis, float angle) {
|
|
|
|
|
|
|
|
|
|
Quaternion quaternion;
|
|
|
|
|
float num2 = angle * 0.5f;
|
|
|
|
|
float num = (float)Math.Sin((double)num2);
|
|
|
|
|
float num3 = (float)Math.Cos((double)num2);
|
|
|
|
|
quaternion.X = axis.X * num;
|
|
|
|
|
quaternion.Y = axis.Y * num;
|
|
|
|
|
quaternion.Z = axis.Z * num;
|
|
|
|
|
quaternion.W = num3;
|
|
|
|
|
return quaternion;
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
public static void CreateFromAxisAngle(ref Vector3 axis, float angle, out Quaternion result) {
|
|
|
|
|
float num2 = angle * 0.5f;
|
|
|
|
|
float num = (float)Math.Sin((double)num2);
|
|
|
|
|
float num3 = (float)Math.Cos((double)num2);
|
|
|
|
|
result.X = axis.X * num;
|
|
|
|
|
result.Y = axis.Y * num;
|
|
|
|
|
result.Z = axis.Z * num;
|
|
|
|
|
result.W = num3;
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
public static Quaternion CreateFromRotationMatrix(Matrix matrix) {
|
|
|
|
|
float num8 = (matrix.M11 + matrix.M22) + matrix.M33;
|
|
|
|
|
Quaternion quaternion = new Quaternion();
|
|
|
|
|
if (num8 > 0f) {
|
|
|
|
|
float num = (float)Math.Sqrt((double)(num8 + 1f));
|
|
|
|
|
quaternion.W = num * 0.5f;
|
|
|
|
|
num = 0.5f / num;
|
|
|
|
|
quaternion.X = (matrix.M23 - matrix.M32) * num;
|
|
|
|
|
quaternion.Y = (matrix.M31 - matrix.M13) * num;
|
|
|
|
|
quaternion.Z = (matrix.M12 - matrix.M21) * num;
|
|
|
|
|
return quaternion;
|
|
|
|
|
}
|
|
|
|
|
if ((matrix.M11 >= matrix.M22) && (matrix.M11 >= matrix.M33)) {
|
|
|
|
|
float num7 = (float)Math.Sqrt((double)(((1f + matrix.M11) - matrix.M22) - matrix.M33));
|
|
|
|
|
float num4 = 0.5f / num7;
|
|
|
|
|
quaternion.X = 0.5f * num7;
|
|
|
|
|
quaternion.Y = (matrix.M12 + matrix.M21) * num4;
|
|
|
|
|
quaternion.Z = (matrix.M13 + matrix.M31) * num4;
|
|
|
|
|
quaternion.W = (matrix.M23 - matrix.M32) * num4;
|
|
|
|
|
return quaternion;
|
|
|
|
|
}
|
|
|
|
|
if (matrix.M22 > matrix.M33) {
|
|
|
|
|
float num6 = (float)Math.Sqrt((double)(((1f + matrix.M22) - matrix.M11) - matrix.M33));
|
|
|
|
|
float num3 = 0.5f / num6;
|
|
|
|
|
quaternion.X = (matrix.M21 + matrix.M12) * num3;
|
|
|
|
|
quaternion.Y = 0.5f * num6;
|
|
|
|
|
quaternion.Z = (matrix.M32 + matrix.M23) * num3;
|
|
|
|
|
quaternion.W = (matrix.M31 - matrix.M13) * num3;
|
|
|
|
|
return quaternion;
|
|
|
|
|
}
|
|
|
|
|
float num5 = (float)Math.Sqrt((double)(((1f + matrix.M33) - matrix.M11) - matrix.M22));
|
|
|
|
|
float num2 = 0.5f / num5;
|
|
|
|
|
quaternion.X = (matrix.M31 + matrix.M13) * num2;
|
|
|
|
|
quaternion.Y = (matrix.M32 + matrix.M23) * num2;
|
|
|
|
|
quaternion.Z = 0.5f * num5;
|
|
|
|
|
quaternion.W = (matrix.M12 - matrix.M21) * num2;
|
|
|
|
|
|
|
|
|
|
return quaternion;
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
public static void CreateFromRotationMatrix(ref Matrix matrix, out Quaternion result) {
|
|
|
|
|
float num8 = (matrix.M11 + matrix.M22) + matrix.M33;
|
|
|
|
|
if (num8 > 0f) {
|
|
|
|
|
float num = (float)Math.Sqrt((double)(num8 + 1f));
|
|
|
|
|
result.W = num * 0.5f;
|
|
|
|
|
num = 0.5f / num;
|
|
|
|
|
result.X = (matrix.M23 - matrix.M32) * num;
|
|
|
|
|
result.Y = (matrix.M31 - matrix.M13) * num;
|
|
|
|
|
result.Z = (matrix.M12 - matrix.M21) * num;
|
|
|
|
|
}
|
|
|
|
|
else if ((matrix.M11 >= matrix.M22) && (matrix.M11 >= matrix.M33)) {
|
|
|
|
|
float num7 = (float)Math.Sqrt((double)(((1f + matrix.M11) - matrix.M22) - matrix.M33));
|
|
|
|
|
float num4 = 0.5f / num7;
|
|
|
|
|
result.X = 0.5f * num7;
|
|
|
|
|
result.Y = (matrix.M12 + matrix.M21) * num4;
|
|
|
|
|
result.Z = (matrix.M13 + matrix.M31) * num4;
|
|
|
|
|
result.W = (matrix.M23 - matrix.M32) * num4;
|
|
|
|
|
}
|
|
|
|
|
else if (matrix.M22 > matrix.M33) {
|
|
|
|
|
float num6 = (float)Math.Sqrt((double)(((1f + matrix.M22) - matrix.M11) - matrix.M33));
|
|
|
|
|
float num3 = 0.5f / num6;
|
|
|
|
|
result.X = (matrix.M21 + matrix.M12) * num3;
|
|
|
|
|
result.Y = 0.5f * num6;
|
|
|
|
|
result.Z = (matrix.M32 + matrix.M23) * num3;
|
|
|
|
|
result.W = (matrix.M31 - matrix.M13) * num3;
|
|
|
|
|
}
|
|
|
|
|
else {
|
|
|
|
|
float num5 = (float)Math.Sqrt((double)(((1f + matrix.M33) - matrix.M11) - matrix.M22));
|
|
|
|
|
float num2 = 0.5f / num5;
|
|
|
|
|
result.X = (matrix.M31 + matrix.M13) * num2;
|
|
|
|
|
result.Y = (matrix.M32 + matrix.M23) * num2;
|
|
|
|
|
result.Z = 0.5f * num5;
|
|
|
|
|
result.W = (matrix.M12 - matrix.M21) * num2;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
public static Quaternion CreateFromYawPitchRoll(float yaw, float pitch, float roll) {
|
|
|
|
|
Quaternion quaternion;
|
|
|
|
|
float num9 = roll * 0.5f;
|
|
|
|
|
float num6 = (float)Math.Sin((double)num9);
|
|
|
|
|
float num5 = (float)Math.Cos((double)num9);
|
|
|
|
|
float num8 = pitch * 0.5f;
|
|
|
|
|
float num4 = (float)Math.Sin((double)num8);
|
|
|
|
|
float num3 = (float)Math.Cos((double)num8);
|
|
|
|
|
float num7 = yaw * 0.5f;
|
|
|
|
|
float num2 = (float)Math.Sin((double)num7);
|
|
|
|
|
float num = (float)Math.Cos((double)num7);
|
|
|
|
|
quaternion.X = ((num * num4) * num5) + ((num2 * num3) * num6);
|
|
|
|
|
quaternion.Y = ((num2 * num3) * num5) - ((num * num4) * num6);
|
|
|
|
|
quaternion.Z = ((num * num3) * num6) - ((num2 * num4) * num5);
|
|
|
|
|
quaternion.W = ((num * num3) * num5) + ((num2 * num4) * num6);
|
|
|
|
|
return quaternion;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
public static void CreateFromYawPitchRoll(float yaw, float pitch, float roll, out Quaternion result) {
|
|
|
|
|
float num9 = roll * 0.5f;
|
|
|
|
|
float num6 = (float)Math.Sin((double)num9);
|
|
|
|
|
float num5 = (float)Math.Cos((double)num9);
|
|
|
|
|
float num8 = pitch * 0.5f;
|
|
|
|
|
float num4 = (float)Math.Sin((double)num8);
|
|
|
|
|
float num3 = (float)Math.Cos((double)num8);
|
|
|
|
|
float num7 = yaw * 0.5f;
|
|
|
|
|
float num2 = (float)Math.Sin((double)num7);
|
|
|
|
|
float num = (float)Math.Cos((double)num7);
|
|
|
|
|
result.X = ((num * num4) * num5) + ((num2 * num3) * num6);
|
|
|
|
|
result.Y = ((num2 * num3) * num5) - ((num * num4) * num6);
|
|
|
|
|
result.Z = ((num * num3) * num6) - ((num2 * num4) * num5);
|
|
|
|
|
result.W = ((num * num3) * num5) + ((num2 * num4) * num6);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
public static Quaternion Divide(Quaternion quaternion1, Quaternion quaternion2) {
|
|
|
|
|
Quaternion quaternion;
|
|
|
|
|
float x = quaternion1.X;
|
|
|
|
|
float y = quaternion1.Y;
|
|
|
|
|
float z = quaternion1.Z;
|
|
|
|
|
float w = quaternion1.W;
|
|
|
|
|
float num14 = (((quaternion2.X * quaternion2.X) + (quaternion2.Y * quaternion2.Y)) + (quaternion2.Z * quaternion2.Z)) + (quaternion2.W * quaternion2.W);
|
|
|
|
|
float num5 = 1f / num14;
|
|
|
|
|
float num4 = -quaternion2.X * num5;
|
|
|
|
|
float num3 = -quaternion2.Y * num5;
|
|
|
|
|
float num2 = -quaternion2.Z * num5;
|
|
|
|
|
float num = quaternion2.W * num5;
|
|
|
|
|
float num13 = (y * num2) - (z * num3);
|
|
|
|
|
float num12 = (z * num4) - (x * num2);
|
|
|
|
|
float num11 = (x * num3) - (y * num4);
|
|
|
|
|
float num10 = ((x * num4) + (y * num3)) + (z * num2);
|
|
|
|
|
quaternion.X = ((x * num) + (num4 * w)) + num13;
|
|
|
|
|
quaternion.Y = ((y * num) + (num3 * w)) + num12;
|
|
|
|
|
quaternion.Z = ((z * num) + (num2 * w)) + num11;
|
|
|
|
|
quaternion.W = (w * num) - num10;
|
|
|
|
|
return quaternion;
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
public static void Divide(ref Quaternion quaternion1, ref Quaternion quaternion2, out Quaternion result) {
|
|
|
|
|
float x = quaternion1.X;
|
|
|
|
|
float y = quaternion1.Y;
|
|
|
|
|
float z = quaternion1.Z;
|
|
|
|
|
float w = quaternion1.W;
|
|
|
|
|
float num14 = (((quaternion2.X * quaternion2.X) + (quaternion2.Y * quaternion2.Y)) + (quaternion2.Z * quaternion2.Z)) + (quaternion2.W * quaternion2.W);
|
|
|
|
|
float num5 = 1f / num14;
|
|
|
|
|
float num4 = -quaternion2.X * num5;
|
|
|
|
|
float num3 = -quaternion2.Y * num5;
|
|
|
|
|
float num2 = -quaternion2.Z * num5;
|
|
|
|
|
float num = quaternion2.W * num5;
|
|
|
|
|
float num13 = (y * num2) - (z * num3);
|
|
|
|
|
float num12 = (z * num4) - (x * num2);
|
|
|
|
|
float num11 = (x * num3) - (y * num4);
|
|
|
|
|
float num10 = ((x * num4) + (y * num3)) + (z * num2);
|
|
|
|
|
result.X = ((x * num) + (num4 * w)) + num13;
|
|
|
|
|
result.Y = ((y * num) + (num3 * w)) + num12;
|
|
|
|
|
result.Z = ((z * num) + (num2 * w)) + num11;
|
|
|
|
|
result.W = (w * num) - num10;
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
public static float Dot(Quaternion quaternion1, Quaternion quaternion2) {
|
|
|
|
|
return ((((quaternion1.X * quaternion2.X) + (quaternion1.Y * quaternion2.Y)) + (quaternion1.Z * quaternion2.Z)) + (quaternion1.W * quaternion2.W));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
public static void Dot(ref Quaternion quaternion1, ref Quaternion quaternion2, out float result) {
|
|
|
|
|
result = (((quaternion1.X * quaternion2.X) + (quaternion1.Y * quaternion2.Y)) + (quaternion1.Z * quaternion2.Z)) + (quaternion1.W * quaternion2.W);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
public override bool Equals(object obj) {
|
|
|
|
|
bool flag = false;
|
|
|
|
|
if (obj is Quaternion) {
|
|
|
|
|
flag = this.Equals((Quaternion)obj);
|
|
|
|
|
}
|
|
|
|
|
return flag;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
public bool Equals(Quaternion other) {
|
|
|
|
|
return ((((this.X == other.X) && (this.Y == other.Y)) && (this.Z == other.Z)) && (this.W == other.W));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
public override int GetHashCode() {
|
|
|
|
|
return (((this.X.GetHashCode() + this.Y.GetHashCode()) + this.Z.GetHashCode()) + this.W.GetHashCode());
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
public static Quaternion Inverse(Quaternion quaternion) {
|
|
|
|
|
Quaternion quaternion2;
|
|
|
|
|
float num2 = (((quaternion.X * quaternion.X) + (quaternion.Y * quaternion.Y)) + (quaternion.Z * quaternion.Z)) + (quaternion.W * quaternion.W);
|
|
|
|
|
float num = 1f / num2;
|
|
|
|
|
quaternion2.X = -quaternion.X * num;
|
|
|
|
|
quaternion2.Y = -quaternion.Y * num;
|
|
|
|
|
quaternion2.Z = -quaternion.Z * num;
|
|
|
|
|
quaternion2.W = quaternion.W * num;
|
|
|
|
|
return quaternion2;
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
public static void Inverse(ref Quaternion quaternion, out Quaternion result) {
|
|
|
|
|
float num2 = (((quaternion.X * quaternion.X) + (quaternion.Y * quaternion.Y)) + (quaternion.Z * quaternion.Z)) + (quaternion.W * quaternion.W);
|
|
|
|
|
float num = 1f / num2;
|
|
|
|
|
result.X = -quaternion.X * num;
|
|
|
|
|
result.Y = -quaternion.Y * num;
|
|
|
|
|
result.Z = -quaternion.Z * num;
|
|
|
|
|
result.W = quaternion.W * num;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
public float Length() {
|
|
|
|
|
float num = (((this.X * this.X) + (this.Y * this.Y)) + (this.Z * this.Z)) + (this.W * this.W);
|
|
|
|
|
return (float)Math.Sqrt((double)num);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
public float LengthSquared() {
|
|
|
|
|
return ((((this.X * this.X) + (this.Y * this.Y)) + (this.Z * this.Z)) + (this.W * this.W));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
public static Quaternion Lerp(Quaternion quaternion1, Quaternion quaternion2, float amount) {
|
|
|
|
|
float num = amount;
|
|
|
|
|
float num2 = 1f - num;
|
|
|
|
|
Quaternion quaternion = new Quaternion();
|
|
|
|
|
float num5 = (((quaternion1.X * quaternion2.X) + (quaternion1.Y * quaternion2.Y)) + (quaternion1.Z * quaternion2.Z)) + (quaternion1.W * quaternion2.W);
|
|
|
|
|
if (num5 >= 0f) {
|
|
|
|
|
quaternion.X = (num2 * quaternion1.X) + (num * quaternion2.X);
|
|
|
|
|
quaternion.Y = (num2 * quaternion1.Y) + (num * quaternion2.Y);
|
|
|
|
|
quaternion.Z = (num2 * quaternion1.Z) + (num * quaternion2.Z);
|
|
|
|
|
quaternion.W = (num2 * quaternion1.W) + (num * quaternion2.W);
|
|
|
|
|
}
|
|
|
|
|
else {
|
|
|
|
|
quaternion.X = (num2 * quaternion1.X) - (num * quaternion2.X);
|
|
|
|
|
quaternion.Y = (num2 * quaternion1.Y) - (num * quaternion2.Y);
|
|
|
|
|
quaternion.Z = (num2 * quaternion1.Z) - (num * quaternion2.Z);
|
|
|
|
|
quaternion.W = (num2 * quaternion1.W) - (num * quaternion2.W);
|
|
|
|
|
}
|
|
|
|
|
float num4 = (((quaternion.X * quaternion.X) + (quaternion.Y * quaternion.Y)) + (quaternion.Z * quaternion.Z)) + (quaternion.W * quaternion.W);
|
|
|
|
|
float num3 = 1f / ((float)Math.Sqrt((double)num4));
|
|
|
|
|
quaternion.X *= num3;
|
|
|
|
|
quaternion.Y *= num3;
|
|
|
|
|
quaternion.Z *= num3;
|
|
|
|
|
quaternion.W *= num3;
|
|
|
|
|
return quaternion;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
public static void Lerp(ref Quaternion quaternion1, ref Quaternion quaternion2, float amount, out Quaternion result) {
|
|
|
|
|
float num = amount;
|
|
|
|
|
float num2 = 1f - num;
|
|
|
|
|
float num5 = (((quaternion1.X * quaternion2.X) + (quaternion1.Y * quaternion2.Y)) + (quaternion1.Z * quaternion2.Z)) + (quaternion1.W * quaternion2.W);
|
|
|
|
|
if (num5 >= 0f) {
|
|
|
|
|
result.X = (num2 * quaternion1.X) + (num * quaternion2.X);
|
|
|
|
|
result.Y = (num2 * quaternion1.Y) + (num * quaternion2.Y);
|
|
|
|
|
result.Z = (num2 * quaternion1.Z) + (num * quaternion2.Z);
|
|
|
|
|
result.W = (num2 * quaternion1.W) + (num * quaternion2.W);
|
|
|
|
|
}
|
|
|
|
|
else {
|
|
|
|
|
result.X = (num2 * quaternion1.X) - (num * quaternion2.X);
|
|
|
|
|
result.Y = (num2 * quaternion1.Y) - (num * quaternion2.Y);
|
|
|
|
|
result.Z = (num2 * quaternion1.Z) - (num * quaternion2.Z);
|
|
|
|
|
result.W = (num2 * quaternion1.W) - (num * quaternion2.W);
|
|
|
|
|
}
|
|
|
|
|
float num4 = (((result.X * result.X) + (result.Y * result.Y)) + (result.Z * result.Z)) + (result.W * result.W);
|
|
|
|
|
float num3 = 1f / ((float)Math.Sqrt((double)num4));
|
|
|
|
|
result.X *= num3;
|
|
|
|
|
result.Y *= num3;
|
|
|
|
|
result.Z *= num3;
|
|
|
|
|
result.W *= num3;
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
public static Quaternion Slerp(Quaternion quaternion1, Quaternion quaternion2, float amount) {
|
|
|
|
|
float num2;
|
|
|
|
|
float num3;
|
|
|
|
|
Quaternion quaternion;
|
|
|
|
|
float num = amount;
|
|
|
|
|
float num4 = (((quaternion1.X * quaternion2.X) + (quaternion1.Y * quaternion2.Y)) + (quaternion1.Z * quaternion2.Z)) + (quaternion1.W * quaternion2.W);
|
|
|
|
|
bool flag = false;
|
|
|
|
|
if (num4 < 0f) {
|
|
|
|
|
flag = true;
|
|
|
|
|
num4 = -num4;
|
|
|
|
|
}
|
|
|
|
|
if (num4 > 0.999999f) {
|
|
|
|
|
num3 = 1f - num;
|
|
|
|
|
num2 = flag ? -num : num;
|
|
|
|
|
}
|
|
|
|
|
else {
|
|
|
|
|
float num5 = (float)Math.Acos((double)num4);
|
|
|
|
|
float num6 = (float)(1.0 / Math.Sin((double)num5));
|
|
|
|
|
num3 = ((float)Math.Sin((double)((1f - num) * num5))) * num6;
|
|
|
|
|
num2 = flag ? (((float)-Math.Sin((double)(num * num5))) * num6) : (((float)Math.Sin((double)(num * num5))) * num6);
|
|
|
|
|
}
|
|
|
|
|
quaternion.X = (num3 * quaternion1.X) + (num2 * quaternion2.X);
|
|
|
|
|
quaternion.Y = (num3 * quaternion1.Y) + (num2 * quaternion2.Y);
|
|
|
|
|
quaternion.Z = (num3 * quaternion1.Z) + (num2 * quaternion2.Z);
|
|
|
|
|
quaternion.W = (num3 * quaternion1.W) + (num2 * quaternion2.W);
|
|
|
|
|
return quaternion;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
public static void Slerp(ref Quaternion quaternion1, ref Quaternion quaternion2, float amount, out Quaternion result) {
|
|
|
|
|
float num2;
|
|
|
|
|
float num3;
|
|
|
|
|
float num = amount;
|
|
|
|
|
float num4 = (((quaternion1.X * quaternion2.X) + (quaternion1.Y * quaternion2.Y)) + (quaternion1.Z * quaternion2.Z)) + (quaternion1.W * quaternion2.W);
|
|
|
|
|
bool flag = false;
|
|
|
|
|
if (num4 < 0f) {
|
|
|
|
|
flag = true;
|
|
|
|
|
num4 = -num4;
|
|
|
|
|
}
|
|
|
|
|
if (num4 > 0.999999f) {
|
|
|
|
|
num3 = 1f - num;
|
|
|
|
|
num2 = flag ? -num : num;
|
|
|
|
|
}
|
|
|
|
|
else {
|
|
|
|
|
float num5 = (float)Math.Acos((double)num4);
|
|
|
|
|
float num6 = (float)(1.0 / Math.Sin((double)num5));
|
|
|
|
|
num3 = ((float)Math.Sin((double)((1f - num) * num5))) * num6;
|
|
|
|
|
num2 = flag ? (((float)-Math.Sin((double)(num * num5))) * num6) : (((float)Math.Sin((double)(num * num5))) * num6);
|
|
|
|
|
}
|
|
|
|
|
result.X = (num3 * quaternion1.X) + (num2 * quaternion2.X);
|
|
|
|
|
result.Y = (num3 * quaternion1.Y) + (num2 * quaternion2.Y);
|
|
|
|
|
result.Z = (num3 * quaternion1.Z) + (num2 * quaternion2.Z);
|
|
|
|
|
result.W = (num3 * quaternion1.W) + (num2 * quaternion2.W);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
public static Quaternion Subtract(Quaternion quaternion1, Quaternion quaternion2) {
|
|
|
|
|
Quaternion quaternion;
|
|
|
|
|
quaternion.X = quaternion1.X - quaternion2.X;
|
|
|
|
|
quaternion.Y = quaternion1.Y - quaternion2.Y;
|
|
|
|
|
quaternion.Z = quaternion1.Z - quaternion2.Z;
|
|
|
|
|
quaternion.W = quaternion1.W - quaternion2.W;
|
|
|
|
|
return quaternion;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
public static void Subtract(ref Quaternion quaternion1, ref Quaternion quaternion2, out Quaternion result) {
|
|
|
|
|
result.X = quaternion1.X - quaternion2.X;
|
|
|
|
|
result.Y = quaternion1.Y - quaternion2.Y;
|
|
|
|
|
result.Z = quaternion1.Z - quaternion2.Z;
|
|
|
|
|
result.W = quaternion1.W - quaternion2.W;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
public static Quaternion Multiply(Quaternion quaternion1, Quaternion quaternion2) {
|
|
|
|
|
Quaternion quaternion;
|
|
|
|
|
float x = quaternion1.X;
|
|
|
|
|
float y = quaternion1.Y;
|
|
|
|
|
float z = quaternion1.Z;
|
|
|
|
|
float w = quaternion1.W;
|
|
|
|
|
float num4 = quaternion2.X;
|
|
|
|
|
float num3 = quaternion2.Y;
|
|
|
|
|
float num2 = quaternion2.Z;
|
|
|
|
|
float num = quaternion2.W;
|
|
|
|
|
float num12 = (y * num2) - (z * num3);
|
|
|
|
|
float num11 = (z * num4) - (x * num2);
|
|
|
|
|
float num10 = (x * num3) - (y * num4);
|
|
|
|
|
float num9 = ((x * num4) + (y * num3)) + (z * num2);
|
|
|
|
|
quaternion.X = ((x * num) + (num4 * w)) + num12;
|
|
|
|
|
quaternion.Y = ((y * num) + (num3 * w)) + num11;
|
|
|
|
|
quaternion.Z = ((z * num) + (num2 * w)) + num10;
|
|
|
|
|
quaternion.W = (w * num) - num9;
|
|
|
|
|
return quaternion;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
public static Quaternion Multiply(Quaternion quaternion1, float scaleFactor) {
|
|
|
|
|
Quaternion quaternion;
|
|
|
|
|
quaternion.X = quaternion1.X * scaleFactor;
|
|
|
|
|
quaternion.Y = quaternion1.Y * scaleFactor;
|
|
|
|
|
quaternion.Z = quaternion1.Z * scaleFactor;
|
|
|
|
|
quaternion.W = quaternion1.W * scaleFactor;
|
|
|
|
|
return quaternion;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
public static void Multiply(ref Quaternion quaternion1, float scaleFactor, out Quaternion result) {
|
|
|
|
|
result.X = quaternion1.X * scaleFactor;
|
|
|
|
|
result.Y = quaternion1.Y * scaleFactor;
|
|
|
|
|
result.Z = quaternion1.Z * scaleFactor;
|
|
|
|
|
result.W = quaternion1.W * scaleFactor;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
public static void Multiply(ref Quaternion quaternion1, ref Quaternion quaternion2, out Quaternion result) {
|
|
|
|
|
float x = quaternion1.X;
|
|
|
|
|
float y = quaternion1.Y;
|
|
|
|
|
float z = quaternion1.Z;
|
|
|
|
|
float w = quaternion1.W;
|
|
|
|
|
float num4 = quaternion2.X;
|
|
|
|
|
float num3 = quaternion2.Y;
|
|
|
|
|
float num2 = quaternion2.Z;
|
|
|
|
|
float num = quaternion2.W;
|
|
|
|
|
float num12 = (y * num2) - (z * num3);
|
|
|
|
|
float num11 = (z * num4) - (x * num2);
|
|
|
|
|
float num10 = (x * num3) - (y * num4);
|
|
|
|
|
float num9 = ((x * num4) + (y * num3)) + (z * num2);
|
|
|
|
|
result.X = ((x * num) + (num4 * w)) + num12;
|
|
|
|
|
result.Y = ((y * num) + (num3 * w)) + num11;
|
|
|
|
|
result.Z = ((z * num) + (num2 * w)) + num10;
|
|
|
|
|
result.W = (w * num) - num9;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
public static Quaternion Negate(Quaternion quaternion) {
|
|
|
|
|
Quaternion quaternion2;
|
|
|
|
|
quaternion2.X = -quaternion.X;
|
|
|
|
|
quaternion2.Y = -quaternion.Y;
|
|
|
|
|
quaternion2.Z = -quaternion.Z;
|
|
|
|
|
quaternion2.W = -quaternion.W;
|
|
|
|
|
return quaternion2;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
public static void Negate(ref Quaternion quaternion, out Quaternion result) {
|
|
|
|
|
result.X = -quaternion.X;
|
|
|
|
|
result.Y = -quaternion.Y;
|
|
|
|
|
result.Z = -quaternion.Z;
|
|
|
|
|
result.W = -quaternion.W;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
public void Normalize() {
|
|
|
|
|
float num2 = (((this.X * this.X) + (this.Y * this.Y)) + (this.Z * this.Z)) + (this.W * this.W);
|
|
|
|
|
float num = 1f / ((float)Math.Sqrt((double)num2));
|
|
|
|
|
this.X *= num;
|
|
|
|
|
this.Y *= num;
|
|
|
|
|
this.Z *= num;
|
|
|
|
|
this.W *= num;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
public static Quaternion Normalize(Quaternion quaternion) {
|
|
|
|
|
Quaternion quaternion2;
|
|
|
|
|
float num2 = (((quaternion.X * quaternion.X) + (quaternion.Y * quaternion.Y)) + (quaternion.Z * quaternion.Z)) + (quaternion.W * quaternion.W);
|
|
|
|
|
float num = 1f / ((float)Math.Sqrt((double)num2));
|
|
|
|
|
quaternion2.X = quaternion.X * num;
|
|
|
|
|
quaternion2.Y = quaternion.Y * num;
|
|
|
|
|
quaternion2.Z = quaternion.Z * num;
|
|
|
|
|
quaternion2.W = quaternion.W * num;
|
|
|
|
|
return quaternion2;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
public static void Normalize(ref Quaternion quaternion, out Quaternion result) {
|
|
|
|
|
float num2 = (((quaternion.X * quaternion.X) + (quaternion.Y * quaternion.Y)) + (quaternion.Z * quaternion.Z)) + (quaternion.W * quaternion.W);
|
|
|
|
|
float num = 1f / ((float)Math.Sqrt((double)num2));
|
|
|
|
|
result.X = quaternion.X * num;
|
|
|
|
|
result.Y = quaternion.Y * num;
|
|
|
|
|
result.Z = quaternion.Z * num;
|
|
|
|
|
result.W = quaternion.W * num;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
public static Quaternion operator +(Quaternion quaternion1, Quaternion quaternion2) {
|
|
|
|
|
Quaternion quaternion;
|
|
|
|
|
quaternion.X = quaternion1.X + quaternion2.X;
|
|
|
|
|
quaternion.Y = quaternion1.Y + quaternion2.Y;
|
|
|
|
|
quaternion.Z = quaternion1.Z + quaternion2.Z;
|
|
|
|
|
quaternion.W = quaternion1.W + quaternion2.W;
|
|
|
|
|
return quaternion;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
public static Quaternion operator /(Quaternion quaternion1, Quaternion quaternion2) {
|
|
|
|
|
Quaternion quaternion;
|
|
|
|
|
float x = quaternion1.X;
|
|
|
|
|
float y = quaternion1.Y;
|
|
|
|
|
float z = quaternion1.Z;
|
|
|
|
|
float w = quaternion1.W;
|
|
|
|
|
float num14 = (((quaternion2.X * quaternion2.X) + (quaternion2.Y * quaternion2.Y)) + (quaternion2.Z * quaternion2.Z)) + (quaternion2.W * quaternion2.W);
|
|
|
|
|
float num5 = 1f / num14;
|
|
|
|
|
float num4 = -quaternion2.X * num5;
|
|
|
|
|
float num3 = -quaternion2.Y * num5;
|
|
|
|
|
float num2 = -quaternion2.Z * num5;
|
|
|
|
|
float num = quaternion2.W * num5;
|
|
|
|
|
float num13 = (y * num2) - (z * num3);
|
|
|
|
|
float num12 = (z * num4) - (x * num2);
|
|
|
|
|
float num11 = (x * num3) - (y * num4);
|
|
|
|
|
float num10 = ((x * num4) + (y * num3)) + (z * num2);
|
|
|
|
|
quaternion.X = ((x * num) + (num4 * w)) + num13;
|
|
|
|
|
quaternion.Y = ((y * num) + (num3 * w)) + num12;
|
|
|
|
|
quaternion.Z = ((z * num) + (num2 * w)) + num11;
|
|
|
|
|
quaternion.W = (w * num) - num10;
|
|
|
|
|
return quaternion;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
public static bool operator ==(Quaternion quaternion1, Quaternion quaternion2) {
|
|
|
|
|
return ((((quaternion1.X == quaternion2.X) && (quaternion1.Y == quaternion2.Y)) && (quaternion1.Z == quaternion2.Z)) && (quaternion1.W == quaternion2.W));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
public static bool operator !=(Quaternion quaternion1, Quaternion quaternion2) {
|
|
|
|
|
if (((quaternion1.X == quaternion2.X) && (quaternion1.Y == quaternion2.Y)) && (quaternion1.Z == quaternion2.Z)) {
|
|
|
|
|
return (quaternion1.W != quaternion2.W);
|
|
|
|
|
}
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
public static Quaternion operator *(Quaternion quaternion1, Quaternion quaternion2) {
|
|
|
|
|
Quaternion quaternion;
|
|
|
|
|
float x = quaternion1.X;
|
|
|
|
|
float y = quaternion1.Y;
|
|
|
|
|
float z = quaternion1.Z;
|
|
|
|
|
float w = quaternion1.W;
|
|
|
|
|
float num4 = quaternion2.X;
|
|
|
|
|
float num3 = quaternion2.Y;
|
|
|
|
|
float num2 = quaternion2.Z;
|
|
|
|
|
float num = quaternion2.W;
|
|
|
|
|
float num12 = (y * num2) - (z * num3);
|
|
|
|
|
float num11 = (z * num4) - (x * num2);
|
|
|
|
|
float num10 = (x * num3) - (y * num4);
|
|
|
|
|
float num9 = ((x * num4) + (y * num3)) + (z * num2);
|
|
|
|
|
quaternion.X = ((x * num) + (num4 * w)) + num12;
|
|
|
|
|
quaternion.Y = ((y * num) + (num3 * w)) + num11;
|
|
|
|
|
quaternion.Z = ((z * num) + (num2 * w)) + num10;
|
|
|
|
|
quaternion.W = (w * num) - num9;
|
|
|
|
|
return quaternion;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
public static Quaternion operator *(Quaternion quaternion1, float scaleFactor) {
|
|
|
|
|
Quaternion quaternion;
|
|
|
|
|
quaternion.X = quaternion1.X * scaleFactor;
|
|
|
|
|
quaternion.Y = quaternion1.Y * scaleFactor;
|
|
|
|
|
quaternion.Z = quaternion1.Z * scaleFactor;
|
|
|
|
|
quaternion.W = quaternion1.W * scaleFactor;
|
|
|
|
|
return quaternion;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
public static Quaternion operator -(Quaternion quaternion1, Quaternion quaternion2) {
|
|
|
|
|
Quaternion quaternion;
|
|
|
|
|
quaternion.X = quaternion1.X - quaternion2.X;
|
|
|
|
|
quaternion.Y = quaternion1.Y - quaternion2.Y;
|
|
|
|
|
quaternion.Z = quaternion1.Z - quaternion2.Z;
|
|
|
|
|
quaternion.W = quaternion1.W - quaternion2.W;
|
|
|
|
|
return quaternion;
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
public static Quaternion operator -(Quaternion quaternion) {
|
|
|
|
|
Quaternion quaternion2;
|
|
|
|
|
quaternion2.X = -quaternion.X;
|
|
|
|
|
quaternion2.Y = -quaternion.Y;
|
|
|
|
|
quaternion2.Z = -quaternion.Z;
|
|
|
|
|
quaternion2.W = -quaternion.W;
|
|
|
|
|
return quaternion2;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
public override string ToString() {
|
|
|
|
|
System.Text.StringBuilder sb = new System.Text.StringBuilder(32);
|
|
|
|
|
sb.Append("{X:");
|
|
|
|
|
sb.Append(this.X);
|
|
|
|
|
sb.Append(" Y:");
|
|
|
|
|
sb.Append(this.Y);
|
|
|
|
|
sb.Append(" Z:");
|
|
|
|
|
sb.Append(this.Z);
|
|
|
|
|
sb.Append(" W:");
|
|
|
|
|
sb.Append(this.W);
|
|
|
|
|
sb.Append("}");
|
|
|
|
|
return sb.ToString();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
internal Matrix ToMatrix() {
|
|
|
|
|
Matrix matrix = Matrix.Identity;
|
|
|
|
|
ToMatrix(out matrix);
|
|
|
|
|
return matrix;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
internal void ToMatrix(out Matrix matrix) {
|
|
|
|
|
Quaternion.ToMatrix(this, out matrix);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
internal static void ToMatrix(Quaternion quaternion, out Matrix matrix) {
|
|
|
|
|
|
|
|
|
|
// source -> http://content.gpwiki.org/index.php/OpenGL:Tutorials:Using_Quaternions_to_represent_rotation#Quaternion_to_Matrix
|
|
|
|
|
float x2 = quaternion.X * quaternion.X;
|
|
|
|
|
float y2 = quaternion.Y * quaternion.Y;
|
|
|
|
|
float z2 = quaternion.Z * quaternion.Z;
|
|
|
|
|
float xy = quaternion.X * quaternion.Y;
|
|
|
|
|
float xz = quaternion.X * quaternion.Z;
|
|
|
|
|
float yz = quaternion.Y * quaternion.Z;
|
|
|
|
|
float wx = quaternion.W * quaternion.X;
|
|
|
|
|
float wy = quaternion.W * quaternion.Y;
|
|
|
|
|
float wz = quaternion.W * quaternion.Z;
|
|
|
|
|
|
|
|
|
|
// This calculation would be a lot more complicated for non-unit length quaternions
|
|
|
|
|
// Note: The constructor of Matrix4 expects the Matrix in column-major format like expected by
|
|
|
|
|
// OpenGL
|
|
|
|
|
matrix.M11 = 1.0f - 2.0f * (y2 + z2);
|
|
|
|
|
matrix.M12 = 2.0f * (xy - wz);
|
|
|
|
|
matrix.M13 = 2.0f * (xz + wy);
|
|
|
|
|
matrix.M14 = 0.0f;
|
|
|
|
|
|
|
|
|
|
matrix.M21 = 2.0f * (xy + wz);
|
|
|
|
|
matrix.M22 = 1.0f - 2.0f * (x2 + z2);
|
|
|
|
|
matrix.M23 = 2.0f * (yz - wx);
|
|
|
|
|
matrix.M24 = 0.0f;
|
|
|
|
|
|
|
|
|
|
matrix.M31 = 2.0f * (xz - wy);
|
|
|
|
|
matrix.M32 = 2.0f * (yz + wx);
|
|
|
|
|
matrix.M33 = 1.0f - 2.0f * (x2 + y2);
|
|
|
|
|
matrix.M34 = 0.0f;
|
|
|
|
|
|
|
|
|
|
matrix.M41 = 2.0f * (xz - wy);
|
|
|
|
|
matrix.M42 = 2.0f * (yz + wx);
|
|
|
|
|
matrix.M43 = 1.0f - 2.0f * (x2 + y2);
|
|
|
|
|
matrix.M44 = 0.0f;
|
|
|
|
|
|
|
|
|
|
//return Matrix4( 1.0f - 2.0f * (y2 + z2), 2.0f * (xy - wz), 2.0f * (xz + wy), 0.0f,
|
|
|
|
|
// 2.0f * (xy + wz), 1.0f - 2.0f * (x2 + z2), 2.0f * (yz - wx), 0.0f,
|
|
|
|
|
// 2.0f * (xz - wy), 2.0f * (yz + wx), 1.0f - 2.0f * (x2 + y2), 0.0f,
|
|
|
|
|
// 0.0f, 0.0f, 0.0f, 1.0f)
|
|
|
|
|
// }
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
internal Vector3 Xyz {
|
|
|
|
|
get {
|
|
|
|
|
return new Vector3(X, Y, Z);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
set {
|
|
|
|
|
X = value.X;
|
|
|
|
|
Y = value.Y;
|
|
|
|
|
Z = value.Z;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
}
|